Laboratory Simulation of an Analogue Black Hole Event Horizon
Direct Observation of Hawking-like Radiation in a Quantum System Researchers have constructed a tabletop analogue of a black hole event horizon using a precisely configured Bose–Einstein condensate of ultracold atoms. This system replicates the kinematic conditions under which outgoing waves are trapped at a sonic horizon, mimicking the causal boundary of a gravitational black hole where escape velocity exceeds the local speed of propagation.The experiment employs a flowing atomic medium in which the flow velocity transitions from subsonic to supersonic, establishing an effective metric analogous to the Painlevé–Gullstrand form of the Schwarzschild spacetime. Phonons propagating against the supercritical flow are unable to escape the horizon, thereby forming a one-way membrane that prohibits retropropagation—precisely the defining feature of an astrophysical event horizon.Most significantly, the system spontaneously emits a steady flux of correlated phonon pairs across the horizon. One member of each pair is trapped inside the analogue interior, while the partner escapes to infinity as detectable thermal radiation. Spectral analysis confirms that this emission follows a Planckian distribution with a temperature proportional to the surface gravity of the analogue horizon, in quantitative agreement with Hawking’s original prediction for quantum field theory in curved spacetime:TH=ℏκ2πkBT_H = \frac{\hbar \kappa}{2\pi k_B}T_H = \frac{\hbar \kappa}{2\pi k_B}
where κ\kappa\kappa
is the surface gravity determined by the spatial gradient of the flow velocity.Unlike astrophysical black holes, where direct detection of Hawking radiation is precluded by cosmic distances and minuscule temperatures (∼10−8\sim 10^{-8}\sim 10^{-8}
K for a solar-mass black hole), this laboratory analogue operates at accessible energy scales and allows real-time measurement of the radiation spectrum, pair-correlation statistics, and stimulated emission responses.The platform requires no gravitational field or spacetime curvature; the effect emerges purely from the interplay of quantum fluctuations and the engineered dispersion relation in the flowing condensate. This decoupling of geometry from kinematics provides a controlled environment to probe open questions at the interface of quantum mechanics and general relativity, including information loss, trans-Planckian modes, and the thermodynamic arrow of time.Far from a destructive singularity, this miniature horizon is a precision instrument—one that transforms one of cosmology’s most elusive predictions into a verifiable laboratory phenomenon.

1.17萬
164
本頁面內容由第三方提供。除非另有說明,OKX 不是所引用文章的作者,也不對此類材料主張任何版權。該內容僅供參考,並不代表 OKX 觀點,不作為任何形式的認可,也不應被視為投資建議或購買或出售數字資產的招攬。在使用生成式人工智能提供摘要或其他信息的情況下,此類人工智能生成的內容可能不準確或不一致。請閱讀鏈接文章,瞭解更多詳情和信息。OKX 不對第三方網站上的內容負責。包含穩定幣、NFTs 等在內的數字資產涉及較高程度的風險,其價值可能會產生較大波動。請根據自身財務狀況,仔細考慮交易或持有數字資產是否適合您。

